skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Farina, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We discuss the results of the spectroscopic and photometric monitoring of the type IIn supernova (SN) 2023ldh. Survey archive data show that the SN progenitor experienced erratic variability in the years before exploding. Beginning May 2023, the source showed a general slow luminosity rise that lasted for over four months, with some superposed luminosity fluctuations. In analogy toSN 2009ip, we call this brightening ‘Event A’. During Event A,SN 2023ldhreached a maximum absolute magnitude ofMr = −15.52 ± 0.24 mag. The light curves then decreased by about 1 mag in all filters for about two weeks reaching a relative minimum, which was followed by a steep brightening (Event B) to an absolute peak magnitude ofMr = −18.53 ± 0.23 mag, replicating the evolution ofSN 2009ipand similar to that of type IIn SNe. The three spectra ofSN 2023ldhobtained during Event A show multi-component P Cygni profiles of H I and Fe II lines. During the rise to the Event B peak, the spectrum shows a blue continuum dominated by Balmer lines in emission with Lorentzian profiles, with a full width at half maximum velocity of about 650 km s−1. Later, in the post-peak phase, the spectrum reddens, and broader wings appear in the Hαline profile. Metal lines with P Cygni profiles and velocities of about 2000 km s−1are clearly visible. Beginning around three months past maximum and until very late phases, the Ca II lines become among the most prominent features, while Hαis dominated by an intermediate-width component with a boxy profile. AlthoughSN 2023ldhmimics the evolution of otherSN 2009ip-like transients, it is slightly more luminous and has a slower photometric evolution. The surprisingly homogeneous observational properties ofSN 2009ip-like events may indicate similar explosion scenarios and similar progenitor parameters. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026